29 research outputs found

    Non-adiabatic holonomic quantum computation

    Full text link
    We develop a non-adiabatic generalization of holonomic quantum computation in which high-speed universal quantum gates can be realized by using non-Abelian geometric phases. We show how a set of non-adiabatic holonomic one- and two-qubit gates can be implemented by utilizing optical transitions in a generic three-level Λ\Lambda configuration. Our scheme opens up for universal holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde

    On the stability of quantum holonomic gates

    Full text link
    We provide a unified geometrical description for analyzing the stability of holonomic quantum gates in the presence of imprecise driving controls (parametric noise). We consider the situation in which these fluctuations do not affect the adiabatic evolution but can reduce the logical gate performance. Using the intrinsic geometric properties of the holonomic gates, we show under which conditions on noise's correlation time and strength, the fluctuations in the driving field cancel out. In this way, we provide theoretical support to previous numerical simulations. We also briefly comment on the error due to the mismatch between real and nominal time of the period of the driving fields and show that it can be reduced by suitably increasing the adiabatic time.Comment: 7 page

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure

    Multi Mode Interferometer for Guided Matter Waves

    Get PDF
    We describe the fundamental features of an interferometer for guided matter waves based on Y-beam splitters and show that, in a quasi two-dimensional regime, such a device exhibits high contrast fringes even in a multi mode regime and fed from a thermal source.Comment: Final version (accepted to PRL

    Relation between geometric phases of entangled bi-partite systems and their subsystems

    Full text link
    This paper focuses on the geometric phase of entangled states of bi-partite systems under bi-local unitary evolution. We investigate the relation between the geometric phase of the system and those of the subsystems. It is shown that (1) the geometric phase of cyclic entangled states with non-degenerate eigenvalues can always be decomposed into a sum of weighted non-modular pure state phases pertaining to the separable components of the Schmidt decomposition, though the same cannot be said in the non-cyclic case, and (2) the geometric phase of the mixed state of one subsystem is generally different from that of the entangled state even by keeping the other subsystem fixed, but the two phases are the same when the evolution operator satisfies conditions where each component in the Schmidt decomposition is parallel transported

    Geometric Phase: a Diagnostic Tool for Entanglement

    Full text link
    Using a kinematic approach we show that the non-adiabatic, non-cyclic, geometric phase corresponding to the radiation emitted by a three level cascade system provides a sensitive diagnostic tool for determining the entanglement properties of the two modes of radiation. The nonunitary, noncyclic path in the state space may be realized through the same control parameters which control the purity/mixedness and entanglement. We show analytically that the geometric phase is related to concurrence in certain region of the parameter space. We further show that the rate of change of the geometric phase reveals its resilience to fluctuations only for pure Bell type states. Lastly, the derivative of the geometric phase carries information on both purity/mixedness and entanglement/separability.Comment: 13 pages 6 figure

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    Atom Chips

    Get PDF
    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems

    Teleportation of a quantum state of a spatial mode with a single massive particle

    Full text link
    Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends the work of Phys. Rev. Lett. 103, 200502 (2009

    Berry and Pancharatnam Topological Phases of Atomic and Optical Systems

    Full text link
    Theoretical and experimental studies of Berry and Pancharatnam phases are reviewed. Basic elements of differential geometry are presented for understanding the topological nature of these phases. The basic theory analyzed by Berry in relation to magnetic monopoles is presented. The theory is generalized to nonadiabatic processes and to noncyclic Pancharatnam phases. Different systems are discussed including polarization optics, n-level atomic systems, neutron interferometry and molecular topological phases.Comment: Review article,72 pages, 186 reference
    corecore